
42 Jan – Feb 2015

fired, and the bruised pride of the company’s own executive who
had to pay cash for his gas and Slurpee, was that the situation was
entirely avoidable.

The road to bad Process is
paved with good intentions.

Managing Changes: The Intent
Software Configuration Management (SCM) is the practice

of tracking and deploying changes in a complete, reliable, and
repeatable manner. It is the cornerstone of legal and auditing
requirements of the financial industry in much of the world.
That is the intent, subject to interpretation of course. Software
has never been just about programming languages, or the
source code. It is also the complete bag of tricks that go with
the software, including scripts, database changes, installation
instructions, and recently, property files, XML configuration files,
and server definitions. Repositories, or libraries, that we use to
manage our releases, need to include it all - every last bit or we
end up having to do extra work, like filing incident reports.

Where the ad hoc process designers thought they were
making an improvement was to organize changes by job
function – programs to one group, database changes to another.
This improvement simplified and clarified the deployment for
everyone, satisfying the requirements of separation of duties
also mandated by the organization, but it created vulnerability.
The new process took a single change with all of its hundreds of
parts, which was intended to go forward to production as a unit,
and split it. The result: something was missed. This omission
was invisible to the Production Support Deployment team. They
could not know.

In traditional SCM products, changes are tracked for every
file. This article, for example, had roughly twenty revisions.
Some products allow changes to be grouped into packages,
releases, and tagged. But still, the changes are recorded for each
individual component. This antiquated approach to version
management allows files to be repackaged after they have been
turned-over, and risks changing the intent of a delivery. In
2005, Linus Torvalds looked for an alternative for managing
development of the LINUX Kernel by 250 developers (at the
time) across much of the planet. To quote him: “Take CVS as an
example of what not to do; if in doubt, make the exact opposite
decision”1. And git was born.

The approach taken by git is to track changes as immutable
items that span all of the involved files. You cannot split up a
change, unless you go to a lot of deliberate and well planned
trouble. And trouble is exactly what you will get. For LINUX,
this addressed the same problem that our intrepid company

What Git Means to the NonStop Community

Randall S. Becker >> President >> Nexbridge, Inc.

Preamble
By the time the investigator was called, it was Tuesday, and

forensic evidence was difficult to find. The production installation
was scheduled at 2am, the previous Sunday. By the time the dust had
settled, it was thirty hours later, and customers were not impacted,
but nerves were shattered, and two managers and a director were
cleaning out their desks. It was all going according to plan, and yet
someone invoked the emergency 3am “Hero” procedure. You know,
the one where Production Support sees something wrong and puts out
a call for help from Development. It was just as well, because if the
mandated process had been blindly followed to the letter, the result
would have been far worse.

Here is how the situation set itself up: a new release was to be
installed; the instructions were written down; visually checked; the
software tested; pushed into the code repository; taken out of the
repository; and installed. All according to the way of doing things
here. But when traffic started flowing through the system, things
went very badly. Purchases stopped being approved. Deposits were
rejected, and ATMs were displaying “Happy Halloween” instead of
ads for “Black Friday”. It was lucky that someone noticed within
seconds, and quickly called in the problem from the field. The release
was rolled back, and other than one senior VP’s pride being slightly
bruised at having a purchase declined, no other customer was the
wiser. Development was called, and you probably know the story
from there.

What had gone wrong? According to the investigator, Process
was followed to the letter, at least from the time the plan was
created. Development had followed Process, and put code into the
change repository properly. Operations had taken the code from
the repository and installed it, but upon examination, the database
update script had been omitted and some critical data was missing
from the production environment, including the addresses of some
of the devices, which caused… well, you know that story too. In this
situation, just prior to the final release being built some weeks before,
the testing group had split the release into code, configuration, and
data scripts so that each could be tested in isolation. There were three
separate tags, or change requests, associated with those. Somehow,
one of the new tags was missed in the release plan, so by the time the
release was installed, it was incomplete. And people lost their jobs.

What you have just read was fiction, but based on all too
true events. The root cause was not that the code repository had
permitted the operation, nor that the testing group had designed
new processes that were incorrect, or that anyone had failed to do
their jobs, at least according to what was written down. It was that
the new testing process, which was by all accounts a good idea, and
the established, mandated and expected ten year old documented
process were incompatible. The tragic part, for the people who were

43www.connect-community.org

one so that developers can organize changes together into one
immutable package after all work is complete on a change request,
by squashing the changes into a single merged version.

Remember this bit of git terminology,
it will serve you well: Merge Squash

In our community of high-reliability, combining separate
changes from different developers into one single change package
is a desirable approach. We have had to wait until git for this highly
beneficial practice that prevents the very omissions that our case
study illustrated.

Branching: Good or Bad
When branching was first introduced to SCM, it was

problematic. Because every file could be modified individually, and
branched in isolation, the permutations and combinations of test
cases grew with each file and branch a developer created. There
was no way to easily manage the massive number of test cases an
analyst would need to build to support branching. Because git very
effectively contains branches to individual work packages (your
branch, your change request), isolation testing aligns closely with
branches and becomes very manageable. No longer do we have to
fear branches.

The Repository Lives Everywhere
Here is the rub, for us anyway. For eons, by technology

standards, SCM products that ran on NonStop resided either on a
development server, a production server, a QA server, or something
not NonStop but backed up constantly. Git fundamentally changes
the rules: the repository is everywhere and anywhere. It is on each
developer’s desktop, laptop, on the development server, in QA, and
in production. That is how git was designed, and in order to get it
right, you need to build process around this intent.

Figure 1 below is a sample process flow:
1.	 A developer commits a change in ECLIPSE which, by the

way, has git built-in. This change includes code, Makefiles,

experienced, how to do you know what each developer intended
if their changes can be split apart easily. For our community
the implications to the processes we use are subtle, but highly
impactful.

1.	 Developers identify everything associated with one
immutable change as just that: a single version.

2.	 Creating branches to isolate what you are working on is
not only a nice-to-have, it is easy and essential.

3.	 Testers should only take complete changes. Cherry
picking what you want is fine, but this applies to
changes, not individual files – unless the person who
made the change intended the changes to a single file to
stand on its own.

4.	 Never omit a file from a release if it is part of a change.
If you need to omit it, get consent from the developers
by having them create a change specifically for that
purpose.

5.	 The build process needs to consider the change units in
their entirety, not just individual object files.

How This Effects Jobs Responsibilities
In the 1980s, there was a move to isolate testing and

development responsibilities. This strengthened into the 2010s
and will continue. But communication needs to improve in our
community of high reliability and availability. The need to test
components and changes as immutable units actually requires
more communication. Testers need to let developers know what
components are being tested and, in the case of retesting, how
changes are organized. In turn, developers need to be clear
about the intent and impact of their changes. Git provides the
means where changes move forward towards production as a
single unit. Reality does not always cooperate, and developers
often have to commit (or check-in, or submit) their changes more
than once while unit testing; fortunately, git solves this where
other SCM products do not, with a built-in function made just
for developers. Even numerous changes can be combined into

Figure 1: Sample Process Flow

www.connect
-community.org

44 Jan – Feb 2015

Even more relevant for our community is that each repository can
be, and should be, secured separately. Only the testing group should
be able to pull changes into their repository from the development
repository. Only production should be able to pull changes from the
testing repository. The testing group could be allowed to pull history
from production, and push that history back to development. Even
more advanced security models are currently evolving so we should
soon see additional approaches coming online.

Even Cherry Picking does not violate
Git’s law of immutable changes.

But in a pinch, when the inevitable 3am Emergency Hero Process
is invoked to deal with some unforeseen crisis, git’s Cherry Pick
function allows fully auditable individual changes to be rapidly
deployed either from development or from production and then
reintegrated into the normal process; regardless of what branch
they were hiding on. But even the Cherry Pick does not violate
git’s law of immutable changes. It may be 3am, but you do not want
to make things worse by leaving behind some critical part of the
emergency fix that no one remembered to bring forward.

Conclusion
Git is fundamentally different from other SCM solutions

available for NonStop, and it is already on your desktop with
NSDEE 4 as part of the ECLIPSE Juno package. You just need
to hook it up to a repository. While all products provide file
versioning of some kind, and some products provide packaging and
release mechanisms, git supports immutable cross-file changes. Git
will change the way we deploy solutions on NonStop servers, as it
has in LINUX. Instead of guessing what files make up a change, we
will know based on the complete and intact package. Combining
packages by squashing them together further reduces the likelihood
of omissions. As we get used to the new processes at our disposal,
the 3am emails will shift to a more celebratory tone. And best of all,
no one will need to be terminated.

If Git can manage LINUX,
it can manage your application.

As I am fond of repeating – often and usually standing on a
soap box – if git can support workflows for the development and
maintenance of the LINUX operating system kernel and hundreds
of other applications spanning thousands of developers, chances are
good that it can work for you. And finally, if you are going to build
a Process, make it simple, sound, believable, and something people
will follow because it makes sense. Do it not just because you tell
them they have to do it that way. If you ignore the last bit, people
will come up their own processes. It is inevitable and not really the
kind of surprise you want to experience at 3am.

ant or build scripts, XML, and supporting scripts. A new
change is created in the developer’s local repository –
termed a clone of the repository – and is signed using their
personal unique secure key. This identity will follow the
change everywhere.

2.	 The developer pushes the change to a shared git repository
on the development server. This server may or may not be
a NonStop.

3.	 A change administrator approves the developer’s change
and merges it into the common development branch.

4.	 The testing group pulls the development branch to the testing
repository. A build is done and tested. The release installation
and fallback scripts also should be tested at this point.

5.	 The build is approved and committed to an approved
tested branch. A release administrator merges this
change, including the build and all components onto the
deployment branch.

6.	 The deployment branch is fetched to the production
repository, which contains a copy of that branch. The
branch is pulled into the production environment and
installed. Of course, it means you need to have git on each
production machine, no matter the platform.

7.	 Deployment branches can be pulled (or pushed) back to the
shared development repository for reference on what was
installed where.

The movement of code should be
completely automated and predictable

- the hallmark of good Process.
The movement of the code is entirely automated. Humans are

involved when decisions to approve specific changes need to be
made. When there are many production environments, step 6 is
repeated. If there is a fallback required, a previous version on the
deployment branch in production is pulled into the production
area and reinstalled. To improve clarity, it is even acceptable to
reverse the commit of the bad release from the deployment branch
so that the HEAD of the branch is the one installed. There is a
tremendous amount of flexibility in the actual workflows and
procedures which are supported by git.

Git supports many possible workflows.

Audit and Security
Git would have made the investigator’s job much easier. Changes

that move from one repository to another retain their identities.
Production Support can see exactly who made what change and
for what purpose, at least if you comment your changes. Git even
integrates through ECLIPSE, with defect tracking systems and code
review systems.

Randall S. Becker is a speaker, author, and consultant on Process that delivers continuous availability. He has been an expert in Software Configuration and
Change Management since 1989 and has spoken at many NonStop and community events.
Randall can be contacted at: +1.416.984.9826 or rsbecker@nexbridge.com.

Git for NonStop is available from ITUGLIB at http://ituglib.connect-community.org/apps/Ituglib/HomePage.jsf.

1 Linus Torvalds (2007-05-03). Google tech talk: Linus Torvalds on git. Event occurs at 02:30. Retrieved 2007-05-16.

mailto:rsbecker@nexbridge.com
http://ituglib.connect-community.org/apps/Ituglib/HomePage.jsf

