
16 July – Aug 2015

Preamble
It was March 2015 and the NULL DOS vulnerability was

discovered in OpenSSL. A number of vendors and customers were
clamouring for a fix, but how was that going to happen? Who was
going to fix it? When? Fortunately, a group of LINUX and NonStop
heroes were on it from the moment the news broke.

It took the development team some time to come up with and
certify the correctness of a fix. Then, the wheels started moving. The
change was pushed out to the LINUX repositories, then to GNU
and GitHub. Within minutes of the commits and tags showing up
at GitHub, the ITUGLIB team pulled the change down to their
repository. Five minutes after that, the platform changes were merged
in, built and the tests started. Forty-five minutes after that the code
was packaged for deployment to the website.

What you have just read was entirely based on true events,
but is the exception rather than the rule. The integration
between external entities, development repositories,

and production is informal at best, and denied at worst. Tracking
of changes between different contributors still mimics paper-based
accounting, not state-of-the-art policies. Our IT infrastructures do
not generally have a solid backbone to support themselves. This
article will help you understand how you can be efficient, successful,
and all those good things, using distributed version control systems
as communication and transport method for your software assets.
With a solid supported backbone, your organization can withstand
radical technology changes, including to your backbone itself.

Operational History
In 1972, an early version control system called SCCS was built at

Bell Labs for an IBM 370 system to track changes on mainframes.
This system was quickly adopted into the UNIX project and became
a standard. In those days, there were no client-server systems; no
workstations; no Internet, no distribution methods. Even disks
were new. Most production programs existed as punch cards, so
version control involved physically managing boxes and boxes
of cardboard. Sharing of code was like sharing books in a library.
You had to borrow bits and pieces. The idea of a communication
backbone existed only as a concept in the minds of researchers.

In the years that followed, there were few advances in version
control technology. There was little need. Better mouse-traps
were built, but all had the same basic notions: track changes on a
computer’s disk instead of on punch cards; record who made the
change and why; store differences so you can recover old versions
just in case. Along came Tandem in 1978, which was fundamentally
a client-server machine. EXPAND was there too and we had
production-hardened systems that communicated with each other.
UNIX still had a way to go to come up to speed with that concept
and ARPANET was still being built. For change managers, this

presented challenges, because code could be moved between systems
easily, but processes to do that were not really well understood.

By the late 1980s, people started to see the importance of code
movement. Workstations were becoming pervasive. Program
editing started happening on desktops, and the need for central
repositories became important. Fortunately for IT, there was an
intuitive understanding of the centralization that came with the
origins of SCCS back on mainframe systems. Companies adopted
SCCS-like solutions that supported centralization, and we still tend
to operate using policies that restrict solutions along those lines.

Once such product, RMS, from the beginning was designed
to move code between systems. This was intended for multiple
purposes: first, to allow development code to move to production
through releases; second, to provide a means where vendors
could send releases of code to customers for integration into their
environments. This capability was revolutionary at the time, being
one of the first distributed version control systems (DVCS). The
(overly ambitious) intent of that capability was to build a form of
code migration middleware. If NonStop had been more pervasive
in organizations, or RMS available on other platforms, perhaps that
would have happened.

Time passed, the Internet happened, and thousands of developers
started collaborating on joint projects like Linux, GNU, Tomcat.
Products like Subversion and CVS were eventually replaced by DVCS
systems including Mercurial and git because of the ability to migrate
code from system to system and to identify the path code took over
time to arrive at fixes. This ability has enabled, for example, the
ITUGLIB team to be extremely responsive to find out about a bug
in OpenSSL, receive the multi-file fix, automatically merge changes
into ported code, test, and deploy the fix to the Connect Community
website within about a day.

The Software Change Backbone
What is really interesting about how DVCS systems evolved is a

seemingly incidental requirement: to be able to interact with other
types of DVCS systems. There are bridges between Mercurial and
git, Subversion and git, even Team Foundation Server and git – git
being one of those common bits of enabling systems. A lot of effort
has been put into these connectors. The Subversion connector even
has a CVS variant that allows conversion from a CVS repository to
git. A normal reaction would be to say “Oh good, so you’re saying
I can migrate to git. That’s nice.” That point of view is fine but is
based on the ideological need for a central repository, which is
actually no longer necessary and actually problematic for many IT
departments. What you should really ask now is: “Randall, where
are you going with this?” Good question.

The ability to link DVCS systems together creates a
mindboggling capability. With it, we can build a Software Change

Committing to Git: Integrating a Software
Change Backbone into Your Organization

Randall S. Becker >> President >> Nexbridge Inc.

17www.connect-community.org

Backbone – a structure where repositories are linked together to
share changes.

In a Change Backbone, developers interact with their official
Repository of Record (RoR). This repository contains all of the change
history that the department wants to keep for posterity. It may be before
or after the Quality Control part of the organization. It may also not be
the final destination for the changes. The Repository of Record can be
used as a source for mirror sites that pass the changes along to other
repositories on other platforms or other products. The integration
between DVCS products should allow that, although you may have to do
some automation work to make it happen in your shop.

A practical Change Backbone for broad
use of Open Source for NonStop should
include git, Subversion, and Mercurial.

The Need
In today’s development environments, code is shared between

platforms. Whether it is a JSON library that runs partly on a mobile
device and partly inside an NSJSP 7 TS/MP server, the code needs to
be managed effectively. How do we do this particularly with different
development groups participating in the effort? With a Change
Backbone, keeping cross-platform development in sync is simple. Let’s

take a look at an overly complicated example to illustrate the point:
In our project, Bob and Steve are collaborating on a bit of

mobile development. They are building and using JSON libraries
that Nick and Alice need for their server development. The
Windows and NonStop Repositories of Record automatically keep
the main development branches in sync. Nick is working on server
configuration definitions so is doing his work in OSS. Alice is
building code using NSDEE on his workstation. Jan is coordinating

merges on both the NonStop and Windows boxes, and is pulling
production releases from the Linux mirror into various production
environments that need the packaged products.

Movement between the Windows, NonStop, and Linux servers
is automatic and continuous. From a git point of view, this can be
done by hooks that are invoked when a push function occurs. As
a result, Steve and Bob can publish their changes to the backbone
through a simple push. This can be selective so that their works in
progress, or topic branches, are not published. Nick and Alice can
pick up their changes through a rebase off their own repositories,
and really do not need to interact much with Steve and Bob at all;
although, if they have to fix anything in the JSON libraries, they
can commit and push to the NonStop repository. This will cause
updates to the Windows repository that Steve or Bob can integrate
into their projects. For anyone but Jan, and her support group,
having the backbone in place is really not visible.

The decision to pull production releases from the Linux mirror is
really a verification step for knowing the repository backups are in place.
Having a mirror is a really important part of repository management and
provides an active backup. There is no need for replication software to do
this function in the DVCS world – it is a built-in bonus.

Implications
This brings up another really important effect: once we have a

working Change Backbone, we are no longer restricted by needing
to have the same product on every platform or even in every
department. As long as a department’s DVCS has a solid connector
to the main repositories they can participate. This means that one
department may use git, while another uses Mercurial, and a third
uses Subversion. The limiting factor on what is available is based
almost on staffing availability and budget to support the products.
Even migrating from one product to another or one platform
or another does not really involve major technological efforts.
On a Change Backbone, migration involves setting up a new
participating mirror as a destination for changes. Running multiple
repository products in parallel as a transitional step becomes
almost mechanical.

From the backbone’s point of view, even changing the pointers to
the repository of record is a very simple task that can be automated.
If for some reason, you need to move or replace a repository server,
you can either change its name via DNS or modify the upstream
identifier (in git). Even better, because the change identifiers and
access keys can be made global across segments of the backbone,
developers will likely not be impacted by migrations.

Built-in Availability
We all know that NonStop is seriously available. Some other

notable platforms are not; and yet, we may need those to participate
in the backbone and have their code managed. This is really
important when you are trying to keep track of your company’s
DNA. With NonStop, the backbone is always available.

Release management
Possibly the most powerful capability of a Change Backbone

is to provide a method of moving code from system to system
and platform to platform in a consistent manner. Imagine being
able to identify a production file back to the developer who
made the change across four or five distributions. With a Change

18 July – Aug 2015

Of course, no one with a separate production system should
do this. Another picture keeps the RoR on development, although
it could easily be in production. The interesting point about this
picture is that it is the first step in building a backbone. The next
picture shows the introduction of a production repository. This
repository would pull from the development repository to avoid
any security issues. Only people with access to the production
server would need access to its repository. If a production fix is
made, it could be committed and pushed back to development.

The separation of repositories by security rules is actually a
really important concept to the Change Backbone. Not only does
each segment in the backbone have a specific purpose, platform,
and product, it also has potentially distinct security rules. Where a
DVCS is critically different than traditional VCS systems is that the
production repository does not have to be local to the host where it
is being used. In the above picture, the production repository could
sit on any platform in the backbone. If we add a new repository for
Quality Assurance, the picture starts to take shape:

Once QA is involved, it generally makes sense to move the RoR
to that environment. It can still be on the same development box,
but under a separate secure environment. Another interesting
capability of a DVCS is maintaining multiple copies on the same
box. Git has an advantage over some other systems in that that you
do not need an underlying database engine to maintain multiple
instances. Repositories are very easily moved and replicated to help
with virtualization of this type.

Integrating with ITUGLIB
The ITUGLIB team is creating its own backbone that can be

integrated into your own backbone. Let’s take a look at how this
might work for the OpenSSL project:

ITUGLIB has already integrated with the OpenSSL repository.

Backbone, a commit to one repository is preserved no matter
where it is distributed in the organization. This allows releases
to be built and identified tying source and object together in one
immutable package. Production machines, regardless of platform,
can connect to the backbone to pull releases, and the need to copy
(and potentially miss) files between systems vanishes. Operations
should start planning for a day when installation and fallback will
be as clean as pulling the appropriate branch into the working
production area from a Repository of Record clone.

Vendor Management Intake
Using an industry standard DVCS, vendors can participate in

your Change Backbone. I can hear your thoughts: “Wait. What?
How could that possibly work? I’m not giving vendors access to
my network.” Many DVCS systems are symmetrical, meaning that
you can choose to replicate content either using a push model, or a
pull model, or both. Let’s suppose that your vendor has migrated to
git. They make their code available on an SSH server behind their
firewall, and have given you access. Your backbone can periodically
pull branches from their server into a server, which can then publish
content internally. The commit identifiers would be consistent
from the vendor’s environment right through to your production
machine. Even if you had to apply customizations, those are still
merge operations off of the vendor’s commits. Your changes and
the vendor’s become part of the history that is contained in your
repositories. I think the word you are now looking for is “Nifty”.

But wait, there’s more. Suppose you find a problem in production
in one of the scripts supplied by a vendor and have to do that scary
3am fix thing. Committing and pushing that change to production’s
repository can initiate a sequence of events involving pushing the
changes back to the developer’s copy of your production branch – so
that developers can see the change – and can even push all the way
back to the vendor – assuming you choose to do that. The vendor
can then take the change and merge it into their next release, without
anyone having to email the code around. Emergency changes
become part of the company’s DNA through the same mechanism as
any other change and now include vendor code bases.

NonStop Production
There are a few variations for NonStop, depending on how involved

you get with a Change Backbone. The following is a very simple picture
that assumes an RoR on a NonStop server that is not in a backbone,
but has git and NSDEE involved. Because the repository is visible over
EXPAND from /E, you could use standard security for access.

19www.connect-community.org

important, and this will probably be the subject of the next article
in this series:

1. Who has read and/or modify access to the code?
2. Are historical records secure and how visible should they be?
3. How is the Repository of Record managed?
4. Which branches need to be kept secure and protected?
These are interesting questions, and strangely not really

any different from traditional central VCS systems. The core
difference is whether history visibility represents a vulnerability.
If you have code that needs to be protected using different
access rules, put that in its own repository and lock it down.
Consider however, that security differences should define a
potentially distinct segment in your backbone, with different
audit and production requirements.

Summary
Building a Software Change Backbone enables a new level

of resiliency in development and production environments.
Being able to close the loop between departments, divisions,
and vendors on change history allows unprecedented tracking
of change history that pushes the boundaries of current
requirements for software auditing in our community, and
normalizes how code is managed. Ultimately, the move of
integrating NonStop code management into the entire enterprise
ecosystem can only be a good thing.

Changes are pulled on demand from Github. When the team
decides to put together a new release, they create a new branch for
the release anchored from the appropriate commit; for example,
the 1.0.2c version. The specific changes needed for NonStop are
then merged into that branch, which involves Mike’s workstation
repository and Jojo’s local OSS clone. The release is tested, and
when ready, the ituglib_release branch is updated with those
changes. The plan is to trigger an automatic update of the NSX
repository and automatic build/test in that environment, which
then goes to the ITUGLIB website to allow downloads. The NSX
mirror will then have an updated ituglib_release branch that
customers can pull into their environments with all of the changes,
and the original history from Github. Customers can automatically
pull the ituglib_release branch to keep up to date and use their
own branch identifier to make that version live within their own
backbone, after their own review and approval process.

An effective integrated backbone
depends on humans to review incoming
changes from suppliers

Security
The elephant in the room for using DVCS continues to be

perceptions about security. There are a few questions where this is

Randall S. Becker is a speaker, author, and consultant on Policy and Process that delivers continuous availability. He is an expert in Software
Configuration and Change Management since 1989 and has spoken at many NonStop and community events.
Randall can be contacted at: +1.416.984.9826 or rsbecker@nexbridge.com.

