
22 Sept – Oct 2015

a private Cloud service called GitHub Enterprise. Atlassian did the
same with their Stash service. Both provide self-managed secure
environments for hosting your repositories entirely inside your own
firewall. It might have been better for our intrepid CIO had GitHub
called their offering the “Private Really Secure Internal Cloud Git
Thing”, so that the hypothetical 3am call would have been avoided.

This article will go into the differences in security models for
some of these layered services, but the most important thing to take
away is that you have different domains for git repositories, and you
need to know exactly what you are discussing when panic sets in:

As you can see from the terminology, there is a lot of overlap in
the brand names.

Insecurity about Git: Myths and Solutions
about SCM Security
Randall S. Becker >> President >> Nexbridge Inc.

Preamble
Jan woke up with a start. Her smart phone was beeping loudly.

The CIO was demanding answers to why some of the company’s
critical ATM driver code had shown up in something called GitHub
Enterprise. Wasn’t access to GitHub blocked by the firewall rules?
What was the exposure? Who had done it? A war room was being set
up and she was expected to join the bridge immediately.

This was the sum of all fears for Jan and her team – not that
security had been compromised, but that confusion about roles, tools,
and access would have to be explained at 3am instead of during a
weekly security briefing with the CSIO.

This was going to be a long night, with very little value to the
company other than clearing up some misconceptions. Again.

What you have read is fortunately not based on real
events, but on the fears that the author has had to
explain whenever the subject of git comes up in

conversation around NonStop. While git itself has been generally
available since 2007 and available for NonStop since early 2014,
adoption has been extremely slow. The primary cause is the
perception, right or wrong, is that git is somehow less secure than
Subversion, RMS, and CVS. This article discusses the reality of git’s
strengths and weaknesses, techniques to secure your code properly,
and addresses the fundamental questions about the security of
workstation-based development.

Disclaimer: Many products will be named in this article.
None of the mentions are an explicit or implicit endorsement by
the author or Connect for the suitability of the product in your
environment and should not be interpreted as advice.

The Chaos of Terms
The name git derives from UK English slang meaning

"unpleasant person". It was coined by Linus Torvalds, who had a
penchant for egotistically naming things after himself, in some way.
The name itself was intended humorously and possibly ironically
as “The Stupid Content Tracker”. Git itself refers exactly and only
to the Distributed Version Control System software itself. You may
have heard the terms EGit and JGit, which refer to the ECLIPSE
Plug-in for git and the Pure Java implementation of git, respectively,
that come bundled with the NSDEE ECLIPSE configuration.

What was inevitable in the world of Cloud services, and with the
word distributed in it, is that people will almost automatically come
to the conclusion that you can make a SAAS-like service out of it. Up
popped services like BitBucket, Atlassian, GitHub, and a whole bunch
of other service providers where you could host your git repository for
free, for Open Source projects, or for reasonable fees for private secure
repositories. This was the first bit of confusion in the git world.

The second bit of confusion came when GitHub decided to create

Domain Description Examples

Clone A working repository
where a developer will
be interacting directly
with git to create activity
and history.

Repositories
created by a clone
operation via git
clone, ECLIPSE
EGit, Atlassian’s
SourceTree.

Upstream The Repository of Record
(RoR) or mirror where
changes are integrated.
This may contain the
sum of all history from all
clones. Developers usually
manage the merging of
activities. Officially known
as ‘origin’.

Usually on a private
server, including
NonStop, Linux, and
Windows.

Enterprise A set of repositories or
mirror backbones (See
Article 3 in the series)
that are managed in a
secure environment.
Changes are typically
integrated into the
mainline histories
through merge operations
by repository managers.

GitHub Enterprise
and Atlassian Stash
are examples of this
type of structure.

Hosted A Cloud SAAS
environment where your
upstream repository is
outside your own network.
You may have control of
the security rules and
policies, depending on the
level of openness of your
repository.

GitHub, BitBucket,
and Atlassian are
examples of these
providers.

23www.connect-community.org

The above concerns are always with you when developers have
their own devices, workstations, and laptops. But for git itself,
as well as other DVCS facilities, there are some core questions
around which you need to establish some solid policies around
very real questions.

The Fundamental Questions
The questions of security in a DVCS world, come down to four

basic areas:
1. Who has read and/or modify access to the code?
2. Are historical records secure and how visible should

they be?
3. How is the Repository of Record managed?
4. Which branches need to be kept secure and protected?
It is a given that audit is a major concern – who is looking

at your code, who has access to it, who is modifying it. But the
fundamental questions will drive a lot of your decisions and are
not really different from traditional centralized VCS systems.
The core difference is whether history visibility represents a
vulnerability. If you have code that needs to be protected using
different access rules, put that in its own repository and lock it
down, or add security management software like Stash.

Who has Access to Code
The biggest question is who can see your code. If you are

an Open Source participant, the answer may be everyone. This
is unlikely in our community, although if you participate in
the ITUGLIB structure, some of your components may have
external connections, relationships, and license requirements.

There are many mechanisms of security for your code
within git. At the simplest, you can use OSS access control lists
(ACL) or basic group ownership to define roles on a team.
Developers code clone repositories for projects for which
they are a part. If you have something like Stash, you can do
this on a per-user basis by adding people to a project. Using
SSH, you can designate a functional user id with separate
audit capabilities for known public key pairs – check that out,
seriously.

When it comes to modifying code, the basic best practice
out there is to designate a repository manager. Developers
would make changes on their own topic branch – you should be
familiar with this by now, and will request that the repository
manager merge their changes into the main integration branch.
This is known as a Pull Request. Have a look at the GitFlow
Process for details on this. It is a useful reference. This
structure gives companies a lot of control over who actually can
contribute changes to production. It groups staff into two roles:
developers and contributors – Open Source terms for people
who make changes, and people who approve the changes.

When talking about git, be clear about what domain
you are discussing.

The biggest differentiation for corporations between the
different layers comes at the Enterprise domain. Off-the-shelf
products like Stash and GitHub Enterprise provide security that
you would otherwise have to script yourself when in a simple
upstream environment. There are many products to do just that,
including branch-level security, from products like gitolite. With
the enterprise-class products, you get a lot of structure, process, and
security enforcement. With git alone, you must depend on OSS and
SSH security rules. Publishing git through HTTP without any other
authentication can leave you exposed.

Software at Rest
An important concern for all intellectual property managers

and Corporate Security Information Officers (CSIO) is how
to deal with a situation where your software could be stolen
while sitting on someone’s laptop, desktop, or jump-drive.
This question has been present since large-scale software
development on platforms like NonStop moved from EDIT/VS
or TEDIT to workstations with the Enterprise ToolKit (ETK)
back around 2002 and ECLIPSE NonStop Development (now
NSDEE) around 2010. In fact, this has little to do with git,
because software on a workstation, whether in CVS, ClearCase,
PrimeCode, Control-CS, or Subversion, is still resident on a
hard drive that can leave your data centre/development office.
The preferred solution for this has been, and probably will
continue to be, drive encryption – regardless of which Version
Control System you have, whether distributed or not. Another
option taken by some companies has been to do all development
on virtual thin clients where the code only resides on in a VM
environment. Other organizations have taken control of the
hardware on desktops and laptops to prevent jump-drives and
other means of storing source code in a portable fashion, but
that gets into the next question.

Software in Flight
Moving software is a more relevant concern for workstation

development and DVCS systems like git. With git, being
about to modify the upstream repository – the place where
you got your copy of the code originally – to point to an open
environment, is a very real concern. Preventing developers
from emailing patches, or pushing your code to their private
repository is a serious and very relevant security consideration.
Firewall rules and email policies and filters are invaluable here
– whether or not you have git. It applies equally to any code that
resides on a network. Lock it down. Do not let your code get
pushed up to a hosted facility, unless it is your own. Do not even
let patches or code fragments get emailed to “friends”.

Don’t be confused between GitHub
Enterprise and GitHub. They may run the
same software, but the former is inside

your network, the latter is not.

More confusion: the git stash function and
the Atlassian Stash product are completely

different things. Don’t confuse the two.

25www.connect-community.org

Conclusion
Git has a standard set of security concerns that are common

to most DVCS and central VCS systems. When looking at git
as a choice of SCM solution, take into account the capabilities
and consider carefully the security rules you need to have in
place in your organization for workstation-based development.
And importantly, try to get past the very confusing git
nomenclature; whether you are trying to convince your
management to embrace the git DVCS or having that dreaded
3am conference call.

Stash provides a means of setting up a discussion for these Pull
Requests (requests to merge my changes), and Gerrit takes it further
by providing explicit code reviews on a change-by-change basis.

Visibility of Historical Records
A conundrum for git, perhaps its greatest value and its

significant concern, is how visible is the sum of historical
records of a project. In git, every commit made by the team
in a project’s repository can be visible to any other developer
– this is not a requirement, but is a general practice. The
capability allows developers to see the origin of any change,
including how it was merged and who made the change. Some
organizations view this as highly valuable, while others consider
it a vulnerability. This is one area where you need to decide
whether the change audit trails of source code modification
are themselves subject to separate security rules. It is a serious
question and one that needs to be answered early during the
implementation of your improved software development process.

Management of the Repository of Record
In any DVCS, you will have a definitive copy of the code located

in one or more repositories. This will include:
•	 The changes that come from developers;
•	 Release packages containing the commits being installed

and built code;
•	 Hot fixes originated from development; and
•	 Production fixes originated from production environments.
Management of these repositories should be kept separate

from development. It may be part of a Quality Assurance group or
Production function, and your security policies will decide that.
However, feeding production fixes back to development is really
important or you will lose critical fixes.

Establishing a separate role for managing definitive
repositories is really important, particularly if you have a
requirement for separation of duties. This role will be responsible
for pulling changes from development repositories – developers
should not have access to the repository of record – and pushing
changes back to development to ensure visibility of production
fixes. This role will also maintain archives of supported releases
and will clean up archives that are no longer necessary –
repositories containing complete images can be very large.

Managing Branches
An early perception of vulnerability of git was its lack of

protection of branches. For example, anyone on a project could
merge code into any branch. This was done under the assumption
that developers were essentially good people of conscience.
This notion was quickly dismissed as risky despite very positive
conduct overall. Separation of duty into developers, contributors,
and reviewers, was physically divided into separate repositories
to allow UNIX security rules to govern who did what. Products
later evolved, including gitolite, Stash, and GitHub Enterprise
to formalize branch security while simplifying and reducing
the number of repositories companies needed to have. For
ITUGLIB, as an example, there is a separation of physical access
to the repository of record so that only contributors may merge
developer changes into the official code.

Randall S. Becker is a speaker, author, and consultant on Policy and Process
that delivers continuous availability. He is an expert in Software Configuration
and Change Management since 1989 and has spoken at many NonStop and
community events.

Randall can be contacted at: +1.416.984.9826 or rsbecker@nexbridge.com.

Git branch management has evolved
rapidly and effectively in the last few years.
If you haven’t looked recently, go look again.

i Documentation on the Gitflow process can be read at both Github and Atlassian websites and
 is widely searchable.

NENUG 2015
Monday, October 19th

HP Offi ces
Andover, MA

Welcome to all NonStop
users in the northeast!

Save the Date

